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Abstract
The paper deals with state estimation, organized in the entry-wise way. The main purpose of the presented
research work is to make a step towards the joint filtering of states of a mixed (both of continuous and
discrete-valued nature) type. The paper describes a general probabilistic solution of the entry-wise
filtering, which provides the estimates of entries of a state vector, updated entry-wise. The proposed
solution is based on factorization of a state-space model via application of the chain rule. The paper
proposes the solutions with specific models. In the case of continuous variables described by linear
Gaussian models the entry-wise updating of the state estimate is reached with the help of decomposition
of precision matrices. The proposed factorized version of Kalman filter covers the state estimation in this
case. The paper considers a special form of the state vector with a discrete-valued entry placed at the
end. Its estimation is based on Bayesian filtering applied to discrete distribution. Practical experiments
demonstrate the filtering with mixed-type states from the urban traffic control area, which is a main
application of the research.

Keywords: state estimation; entry-wise filtering; state-space model; mixed-type (continuous and dis-
crete) data



Chapter 1

INTRODUCTION

The paper is devoted to the problem of state estimation with involved data of a mixed (both of continuous
and discrete-valued nature) type. The estimation of continuous Gaussian state variables is thoroughly
worked out with the help of the famous Kalman filter [1]. Gaussian state-space models have shown
themselves well in such an application area as traffic control systems (as well as many others) [2, 3, 4].
However, some of the state variables are of a discrete-valued nature. The estimation with data models of
both types is highly desirable, but the needed support is rather less developed [5]. Incorporation of the
discrete state entries and the joint filtering of the mixed-type state (currently as a special case) is the
task, addressed in the paper.

Handling with the mixed-type data is known to be a hard problem addressed within completely
different context of logistic regression. Analysis of a series of published works in this field [6, 7, 8, 9, 10]
(a detailed overview can be found in [11]) shown, that despite many existing approaches, the mixed-
type state estimation still calls for a reliable solution. The present paper proposes the solution of this
problem in the form of the entry-wise organized filtering. Specialization of the solution to linear Gaussian
state-space model (in the case of continuous data) is proposed as a factorized version of Kalman filter.
Majority of research found in the field of factorized filtering [12, 13] are primarily directed at reduction of
computational complexity via a lesser rank of a covariance matrix. Exploitation of matrix factorization
with the aim of the entry-wise updating of the state estimate under Bayesian methodology [14] was
proposed in [15] with a reduced form of the state matrix. Later the work [16] proposed the probabilistic
solution of the factorized Bayesian prediction and filtering, based on applying the chain rule. However,
both algorithms were rather hard for implementation and restricted in application. Subsequent papers
[17, 18] continued this line by a series of experiments with the factorized Kalman filter, based on L′DL
decomposition of covariance matrices. Nevertheless, the results in [17, 18] were not too optimistic from
a position of the entry-wise updating of the state estimate. Recently, the paper [19] proposed the novel
relatively successful algorithm with simultaneous data and time updating of the state estimate, which
used, however, a non-standard system model, taken as the joint probability density function (pdf). The
present paper uses the experience of the last mentioned works. The proposed solution is based on the
modified form of the filtering from [19], but with exploitation of the “classical-approach” state-space model
and LDL′-factorized precision matrices. It improves the algorithm and gets rid of most inconsistencies
and inaccuracies. The proposed entry-wise filtering allows a presence of a discrete state entry, currently
placed at the end of the state vector. This special case of the mixed-type state estimation is covered by
the paper.

The outline of the paper is as follows. Basic facts about the models used, Bayesian filtering and the
chain rule are provided in Section 2. The main part of the paper is organized so that Section 3 relates
to the entry-wise filtering, assuming a continuous nature of variables, while Sections 4-5 considers the
mixed one. Section 3 provides the general solution and proposes the factorized Kalman filtering with
simultaneous data and time updating. Section 4 is devoted to involvement of the discrete state and the
filtering with both continuous and discrete variables. Section 5 provides the illustrative experiments with
data from traffic control area.
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Chapter 2

PRELIMINARIES

The probabilistic description of the system, a state of which has to be estimated, is provided by a
state-space model in the following form.

2.1 State-space model

The observation model, specified by the conditional probability density function (pdf)

f (yt|ut, xt) , (2.1)

relates the system output yt to the system input ut and the unobserved system state xt at discrete time
moments t ∈ t∗ ≡ {0, . . . , t̊}, where t̊ is the cardinality of the set t∗ and ≡ means equivalence.
The state evolution model

f (xt+1|ut+1, xt) , (2.2)

describes the evolution of the system state xt.
The estimation of the finite-dimensional system state calls for application of Bayesian filtering.

2.2 Bayesian filtering

Bayesian filtering, estimating the system state, includes the following coupled formulas.
Data updating

f
(
xt
∣∣dt) =

f (yt|ut, xt) f
(
xt
∣∣ut, dt−1

)∫
f (yt|ut, xt) f

(
xt
∣∣ut, dt−1

)
dxt

, (2.3)

∝ f (yt|ut, xt) f
(
xt
∣∣ut, dt−1

)
,

(∝ means proportionality) incorporates the experience contained in the data dt, where dt = (d0, . . . , d̊t)
and dt ≡ (yt, ut).
Time updating

f
(
xt+1

∣∣ut+1, d
t
)

=
∫
f (xt+1|ut+1, xt) f

(
xt
∣∣dt) dxt, (2.4)

fulfills the state prediction.
The filtering does not depend on the control strategy {f(ut|dt−1)}t∈t∗ but on the generated inputs

only. The prior pdf f (x0|u0), which expresses the subjective prior knowledge on the state x0, starts the
recursions.

7



8 CHAPTER 2. PRELIMINARIES

2.3 Model factorization by the chain rule

Application of the chain rule [20] to the models (2.1-2.2) enables to represent them as the product of pdfs
of the individual entries of the output and the state vectors respectively.

f (yt|ut, xt) =
ẙ∏
j=1

f (yj;t|yj+1:̊y;t, ut, x1:̊x;t) , (2.5)

f (xt+1|ut+1, xt) =
x̊∏
i=1

f (xi;t+1|xi+1:̊x;t+1, ut+1, x1:̊x;t) , (2.6)

where ẙ and x̊ denote number of entries of column vectors yt and xt respectively, j = {1, . . . , ẙ},
i = {1, . . . , x̊}. The input ut is assumed to be factorized whenever it would be necessary from com-
putational point of view, nevertheless modeling of input entries is out of interest in the present paper. A
notation in the form xi+1:̊x;t in (2.5-2.6) denotes a sequence of the vector entries from (i + 1) to x̊, i.e.
{xi+1;t, xi+2;t, . . . , xx̊;t}, which is empty, when (i+ 1) > x̊. The filtering of the individual state entries is
the main task addressed in the paper.



Chapter 3

FILTERING WITH
SIMULTANEOUS DATA AND
TIME UPDATING

Let’s assume in the present section, that the state variable is of continuous type and that Gaussian state-
space model could be used with available Gaussian prior on x0 and Gaussian observations. In this case
the application of Bayesian filtering (2.3-2.4) provides Kalman filter. The required state estimate should
be obtained as the product of pdfs, corresponding to the i-th state entries, i.e.

f
(
xt+1

∣∣ut+1, d
t
)

=
x̊∏
i=1

f
(
xi;t+1

∣∣xi+1:̊x;t+1, ut+1, d
t
)
. (3.1)

However, traditional execution of data updating and time updating (2.3-2.4) spoils the form (3.1) due to
the following reasons. In the data updating (2.3) the observation model f (yt|ut, xt) after factorization
(2.5) always remains with the output, conditioned on all entries of the vector xt, while the prior pdf
f
(
xt
∣∣ut, dt−1

)
with the help of the chain rule takes the form

∏x̊
i=1 f

(
xi;t
∣∣xi+1:̊x;t, ut, d

t−1
)
. It hampers

correct entry-wise calculation of the data updating. In case of multi-output Gaussian observation model
it may cause superfluous decompositions and assumptions about the triangular form of the matrix,
corresponding to the state (more detailed explanation is available in Subsection 3.1). After several
attempts [16, 21] it was clear, that, concerning the entry-wise updating, the standard case (2.3-2.4) is
restricted by the single-output observation model. The solution, which the paper proposes, is to organize
the filtering so that the calculation can be fulfilled at one integration step. It helps to get rid of the state
entries, which should be integrated out, simultaneously in all pdfs, involved in the filtering.

General probabilistic formulation of the entry-wise filtering is based on simultaneous performance of
the data and time updating steps (2.3-2.4). An advocated formula of such updating is as follows.

f
(
xt+1

∣∣ut+1, d
t
)
∝

∫
f (xt+1|ut+1, xt)

f (yt|ut, xt) f
(
xt
∣∣ut, dt−1

)︸ ︷︷ ︸
∝f(xt|d t)

 dxt, (3.2)

which is obtained by trivial substitution of the state estimate updated by measurements (2.3) into the time
updating (2.4). Substitution of the factorized forms of the models (2.5-2.6) in (3.2) and decomposition
of the prior distribution according to the chain rule provide the following form of (3.2).

x̊∏
i=1

f
(
xi;t+1

∣∣xi+1:̊x;t+1, ut+1, d
t
)
∝

∫ x̊∏
i=1

f (xi;t+1|xi+1:̊x;t+1, ut+1, x1:̊x;t) , (3.3)

×
ẙ∏
j=1

f (yj;t|yj+1:̊y;t, ut, x1:̊x;t) ,

×
x̊∏
i=1

f
(
xi;t
∣∣xi+1:̊x;t, ut, d

t−1
)
dxt,
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where the presence of variable xt assumes integration over all the entries of the respective vector. The
state estimate in (3.3) presents the product of the updated pdfs f (xi;t+1|xi+1:̊x;t+1, ut+1, d

t). Each of
them corresponds to the i-th entry of the state vector.

3.1 Entry-wise filtering with Gaussian state-space model

Linear Gaussian models (2.1-2.2), used for demonstrating of the entry-wise filtering, are as follows.

observation model yt = Cxt +Hut + vt, (3.4)
state evolution model xt+1 = Axt +But+1 + ωt, (3.5)

where C, H, A and B are the known matrices of appropriate dimensions; vt is a measurement (Gaussian)
noise with zero mean and known covariance matrix Rv; ωt is a process (Gaussian) noise with zero mean
and known covariance matrix Rw.

Application of the relation (3.3) to the models (3.4-3.5) leads to a factorized version of Kalman filter.
The preserving of the factorized form of the state estimate is reached via LDL′ decomposition [14] of the
precision (i.e. inverse covariance) matrices. Such the decomposition supposes L to be a lower triangular
matrix with unit diagonal, D to be a diagonal one and ′ denoting transposition. This kind of matrix
decomposition is used throughout the paper.

The factorization of models (3.4-3.5) can be clearly demonstrated via exploitation of quadratic forms,
contained inside the exponents of multivariate Gaussian distributions, corresponding to (3.4-3.5). Firstly,
one should factorize the observation model (3.4). The measurement noise covariance matrix Rv is inverted
into a precision matrix and decomposed so that

R−1
v = LvDvL

′
v. (3.6)

The resulted factorized quadratic form, corresponding to Gaussian model (3.4), is as follows.

[L′vyt − L′vHut︸ ︷︷ ︸
ρt

−L′vC︸︷︷︸
A

xt]′Dv[L′vyt − ρt −Axt]. (3.7)

Due to expression (3.7), Gaussian distribution of the j-th entry of the output vector can be written in
the form

Nyj;t

ρj;t − ẙ∑
k=j+1

Lv;kjyk;t +
x̊∑
l=1

Ajlxl;t,
1

Dv;jj

 , (3.8)

where Lv;kj , Ajl and Dv;jj are the elements of matrices Lv, A and Dv respectively. Factorization of
the state evolution model (3.5) is made in the similar way. The process noise covariance matrix Rw is
inverted into the precision matrix and decomposed so that

R−1
w = LwDwL

′
w. (3.9)

The factorized Gaussian quadratic form, corresponding to the model (3.5), becomes now

[L′wxt+1 − L′wBut+1︸ ︷︷ ︸
zt+1

−L′wA︸ ︷︷ ︸
Ξ

xt]′Dw[L′wxt+1 − zt+1 − Ξxt], (3.10)

and provides Gaussian distribution of the i-th state entry as follows.

Nxi;t+1

(
zi;t+1 −

x̊∑
k=i+1

Lw;kixk;t+1 +
x̊∑
l=1

Ξilxl;t,
1

Dw;ii

)
, (3.11)

where Lw;ki, Ξil and Dw;ii are the elements of matrices Lw, Ξ and Dw respectively.
Gaussian prior distribution to be incorporated in (3.3) is chosen with mean µ0 and covariance matrix

P0, usually provided by experts from the application domain. The factorization of the prior distribution
is obtained via decomposition of the initial precision matrix with t = 0

P−1
t = Lp|tDp|tL

′
p|t, (3.12)
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which provides the following quadratic form, corresponding to Gaussian distribution of the initial state
xt with t = 0.

[L′p|txt − µ
f
t ]′Dp|t[L′p|txt − µ

f
t ] with µft = L′p|tµt. (3.13)

It allows to present Gaussian distributions of the initial state entries as

Nxi;t

(
µfi;t −

x̊∑
k=i+1

Lp|t;kixk;t,
1

Dp|t;ii

)
, (3.14)

where Lp|t;ki and Dp|t;ii are the elements of matrices Lp|t and Dp|t respectively.
Now one can substitute Gaussian distributions with quadratic forms (3.7), (3.10) and (3.13) in the

simultaneous data and time updating (3.2). After this substitution the function to be integrated is as
follows.

∫
exp

−1
2

L′wxt+1 − zt+1︸ ︷︷ ︸
β1

−Ξxt


′

Dw [L′wxt+1 − zt+1 − Ξxt]

 , (3.15)

× exp

−1
2

L′vyt − ρt︸ ︷︷ ︸
β2

−Axt


′

Dv [L′vyt − ρt −Axt]

 ,

× exp

−1
2

 µft︸︷︷︸
β3

−L′p|txt


′

Dp|t

[
µft − L′p|txt

] dxt,

with additional notations β = [β1; β2; β3], where βi is a column vector. After completion of squares [20]
for xt in (3.15) and subsequent integration of non-normalized Gaussian pdf [16], the variable xt is being
integrated out. The resulted expression is proportional to exp

{
− 1

2λ
}

, with the following remainder λ,
obtained after integration.

λ = β′
(

Ωt − Ωt[Ξ; A; L′p|t]Γ
−1
t [Ξ; A; L′p|t]

′Ωt
)
β, (3.16)

where

Ωt = diag
[
Dw, Dv, Dp|t

]
, (3.17)

Γt = [Ξ; A; L′p|t]
′Ωt[Ξ; A; L′p|t]. (3.18)

With the help of algebraic rearrangement of the remainder (3.16) using completion of squares for xt+1,
one obtains the following Gaussian quadratic form for the factorized state[

L′wxt+1 − zt+1 − D̃−1
t (DwΞΓ−1

t (A′Dv(L′vyt − ρt) + Lp|tDp|tµ
f
t ))
]′
D̃t, (3.19)

×
[
L′wxt+1 − zt+1 − D̃−1

t (DwΞΓ−1
t (A′Dv(L′vyt − ρt) + Lp|tDp|tµ

f
t ))
]
,

where

D̃t = Dw −DwΞΓ−1
t Ξ′Dw. (3.20)

The matrix D̃t, obtained in (3.20) is decomposed so that

D̃t = Lu|tDu|tL
′
u|t. (3.21)

The decomposition (3.21) and factorization of (3.19) (i.e. multiplication of quadratic form by respective
triangular matrix Lu|t) enables to obtain the following result.L′u|tL′w︸ ︷︷ ︸

L′
p|t+1

xt+1 − µft+1


′

Du|t︸︷︷︸
Dp|t+1

[
L′p|t+1xt+1 − µft+1

]
, (3.22)
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where

µft+1 = L′u|t

(
zt+1 + D̃−1

t (DwΞΓ−1
t (A′Dv(L′vyt − ρt) + Lp|tDp|tµ

f
t ))
)
. (3.23)

The obtained result (3.22) preserves the form of the prior distribution (3.13) and expresses the simultane-
ous data and time updating of the decomposed matrices L′p|t and the factorized mean value µft . Finally,
the resulting estimate of the i-th state entry keeps the factorized form (3.14).

Nxi;t+1

(
µfi;t+1 −

x̊∑
k=i+1

Lp|t+1;kixk;t+1,
1

Dp|t+1;ii

)
. (3.24)

The obtained form (3.24) reflects realization of the entry-wise updating in (3.3), where the individual pdf
f (xi;t+1|xi+1:̊x;t+1, ut+1, d

t) is corresponding to the i-th state entry distribution in (3.24). Thereby, the
proposed algorithm enables the modeling of the state entries by the rows of respective vectors (matrices),
operating with the entries mean values, starting from the last one (i.e for i = x̊).

3.2 Verification of entry-wise Kalman filtering

Correct performance of the proposed updating of the state estimate in the factorized form is verified by
unfactorization of the obtained results (3.22-3.23) and their comparison with results of the “classical”
well-elaborated Kalman filter [1, 20], and vice versa (i.e. factorization of the state estimates, provided
by the Kalman filter). The Kalman filter, which computationally coincides with the solution of Bayesian
filtering (2.3-2.4) applied to the models (3.4-3.5), provides the state estimate with mean vector µt+1 and
covariance matrix Pt+1 with the help of the following grouped equations.

data updating Kt = PtC
′(CPtC ′ +Rv)−1, (3.25)

µt = µt +Kt(yt − Cµt −Hut), (3.26)
Pt = Pt − PtC ′(CPtC ′ +Rv)−1CPt (3.27)

time updating µt+1 = Aµt +But, (3.28)
Pt+1 = APtA

′ +Rw. (3.29)

The transformation of the results (3.22-3.23) into the non-factorized form Nxt+1(µt+1, Pt+1) to be com-
pared with (3.25-3.29) is fulfilled as follows.

(L′p|t+1)−1µft+1 = µt+1, (3.30)

(Lp|t+1Dp|t+1L
′
p|t+1)−1 = Pt+1. (3.31)

Obviously, the state estimate Nxt+1(µt+1, Pt+1), obtained in (3.28-3.29), can be transformed to the fac-
torized form by LDL′-decomposition of the precision matrix and multiplication of the mean value by the
transposed triangular matrix.

P−1
t+1 = LDL′, (3.32)

L′µt+1 = µft+1, (3.33)

which executes the double-check of the proposed factorization. The variances of the individual state
entries are verified as inverse elements of diagonal matrix D.

Comparison of both implementations in the unified form successfully provides identical results.



Chapter 4

DISCRETE STATE
INCORPORATION AND MIXED
STATE ESTIMATION

Let’s see how the entry-wise filtering (3.3) could be applied to the mixed-type state. Currently a special
case of the state vector with mixed-type entries is considered, where a discrete entry is placed in the end
of the vector. This solution nevertheless is planned to be extended later.

Let’s consider the state vector [x1;t, x2;t, . . . , xx̊−1;t, xx̊;t] ≡ [x1:̊x−1;t, x̃t]. The state entries

x1;t, x2;t, . . . , xx̊−1;t

of continuous type are supposed to be estimated by the factorized Kalman filter. The last entry xx̊;t,
denoted by x̃t, is a discrete scalar one with a set of possible discrete values x̃∗ ≡ {0,1}. Due to its position
in the end of the state vector, the discrete entry can be considered individually from other foregoing state
entries. It means, that it should be estimated by a suitable filter for subsequent exploitation of its mean
value in (3.3).

One can be now focused on the estimation of the involved discrete state x̃t. To facilitate calculations,
the output vector [y1;t, y2;t, . . . , yẙ−1;t, yẙ;t] should be transformed into the similar form [y1:̊y−1;t, ỹt]. The
last entry yẙ;t ≡ ỹt is supposed to be a discrete (eventually discretized via thresholds, delivered by experts
from the application domain) scalar one with a set of possible discrete values {0,1}. The input ut is
exploited in calculations via a threshold θu, given by the experts (which assumes two cases: ut ≥ θu and
ut < θu).

The models (2.1-2.2) take the following forms with the involved discrete (discretized) variables.

observation model f (ỹt|ut, x1:̊x−1;t, x̃t) , (4.1)
state evolution model f (x̃t+1|ut+1, x1:̊x−1;t, x̃t) . (4.2)

In general, an assumption about omitting of the states x1:̊x−1;t in (4.1-4.2) is made. The forms of these
probabilistic models strongly depend on the application field. In the considered area (see Section 5) such
the assumption seems to be not necessary. The model (4.1) is supposed to be described by the discrete
Bernoulli distribution, shown in Table 4.1, where p with respective indices denotes a probability (assumed
to be known) of taking the possible values of the output, conditioned on values of the state and input.
The distribution from Table 4.1 can be also written in the product form with the help of Kronecker delta,

Table 4.1: Discrete distribution of the output

ỹt = 0 ỹt = 1

x̃t = 0, ut ≥ θu p0|01 p1|01
x̃t = 0, ut < θu p0|00 p1|00
x̃t = 1, ut ≥ θu p0|11 p1|11
x̃t = 1, ut < θu p0|10 p1|10

13
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Table 4.2: Discrete distribution of the state

x̃t+1 = 0 x̃t+1 = 1

x̃t = 0, ut+1 ≥ θu p̃0|01 p̃1|01
x̃t = 0, ut+1 < θu p̃0|00 p̃1|00
x̃t = 1, ut+1 ≥ θu p̃0|11 p̃1|11
x̃t = 1, ut+1 < θu p̃0|10 p̃1|10

Table 4.3: Prior discrete distribution

x̃t = 0 x̃t = 1

p0(t) p1(t)

which expresses a choice of an occurred situation from the possible ones.

f (ỹt|ut, x̃t) =
∏

x̃t∈{0,1}

∏
ut∈u∗

p
δ(ỹt,0)
0|x̃tut

p
δ(ỹt,1)
1|x̃tut

. (4.3)

Similarly, the state evolution model (4.2) is related to Bernoulli distribution, provided in Table 4.2, where
p̃ denotes a known probability of taking the possible values of the state, conditioned on its previous values
and on the input. The product form of the distribution from Table 4.2 is as follows.

f (x̃t+1|ut+1, x̃t) =
∏

x̃t∈{0,1}

∏
ut+1∈u∗

p̃
δ(x̃t+1,0)
0|x̃tut+1

p̃
δ(x̃t+1,1)
1|x̃tut+1

. (4.4)

The prior distribution of the discrete state entry x̃t, shown in Table 4.3, is also chosen as the Bernoulli
one. Its product form can be written as

f
(
x̃t
∣∣ut, dt−1

)
= p

δ(x̃t,0)
0(t) (1− p0(t))δ(x̃t,1) =

∏
k∈x̃∗

p
δ(x̃t,k)
k(t) , (4.5)

where
∑

k∈x̃∗ pk(t) = 1, pk(t) > 0 ∀ k.
The estimation of the discrete state entry is proposed as the direct application of Bayesian filtering

(2.3-2.4) to the models (4.1-4.2) and, respectively, (4.3-4.4). According to the mentioned models, the
relation (2.3) for Bernoulli distributions (4.3) and (4.5) takes the following form, providing the updating
of the state estimate by the measurements.

f
(
x̃t
∣∣dt) =

f (ỹt|ut, x̃t) f
(
x̃t
∣∣ut, dt−1

)∫
f (ỹt|ut, x̃t) f

(
x̃t
∣∣ut, dt−1

)
dx̃t

, (4.6)

=

∏
x̃t∈{0,1}

∏
ut∈u∗ p

δ(ỹt,0)
0|x̃tut

p
δ(ỹt,1)
1|x̃tut

p
δ(x̃t,0)
0(t) (1− p0(t))δ(x̃t,1)∑

x̃t∈{0,1}
∏
x̃t∈{0,1}

∏
ut∈u∗ p

δ(ỹt,0)
0|x̃tut

p
δ(ỹt,1)
1|x̃tut

p
δ(x̃t,0)
0(t) (1− p0(t))δ(x̃t,1)

,

where the integration is replaced by the regular summation and which is evolved via substitution of the
probabilities from Table 4.1 into (4.6), according to the actual values of the output and the input. The
resulting distribution is as follows.

f
(
x̃t
∣∣dt) = p

δ(x̃t,0)
†0(t) p

δ(x̃t,1)
†1(t) , (4.7)

where p†0(t) and p†1(t) are obtained with the help of normalization of the products of the corresponding
probabilities from Table 4.1 and prior probabilities p0(t) and (1− p0(t)) respectively.

The time updating (2.4) for Bernoulli distribution (4.4) and according to the intermediate result (4.7)
takes the following form.

f
(
x̃t+1

∣∣ut+1, d
t
)

=
∫
f (x̃t+1|ut+1, x̃t) f

(
x̃t
∣∣dt) dx̃t, (4.8)

=
∑

x̃t∈{0,1}

∏
x̃t∈{0,1}

∏
ut+1∈u∗

p̃
δ(x̃t+1,0)
0|x̃tut+1

p̃
δ(x̃t+1,1)
1|x̃tut+1

p
δ(x̃t,0)
†0(t) p

δ(x̃t,1)
†1(t) . (4.9)
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The resulted updated state estimate of the discrete entry is obtained as follows.

f
(
x̃t+1

∣∣ut+1, d
t
)

= p
δ(x̃t+1,0)
0(t+1) (1− p0(t+1))δ(x̃t+1,1), (4.10)

with the updated probability

p0(t+1) =
∑

x̃t∈{0,1}

∏
x̃t∈{0,1}

∏
ut+1∈u∗

p̃
δ(x̃t+1,0)
0|x̃tut+1

p
δ(x̃t,0)
†0(t) p

δ(x̃t,1)
†1(t) , (4.11)

= p̃0|0ut+1p†0(t) + p̃0|1ut+1p†1(t), (4.12)

where (4.12) is calculated according to the known values of the input and substitution of the corresponding
probabilities from Table 4.2. The probability of value 1 is

p1(t+1) = (1− p0(t+1)), which can be directly calculated as (4.13)

=
∑

x̃t∈{0,1}

∏
x̃t∈{0,1}

∏
ut+1∈u∗

p̃
δ(x̃t+1,1)
1|x̃tut+1

p
δ(x̃t,0)
†0(t) p

δ(x̃t,1)
†1(t) , (4.14)

= p̃1|0ut+1p†0(t) + p̃1|1ut+1p†1(t), (4.15)

where, similarly, (4.15) is obtained according to the input values and substitution of the probabilities
from Table 4.2. The obtained distribution (4.10) is taken as the prior one for the next step of the discrete
state estimation (4.6) with actual available measurements.

For the sake of simplicity, the filtering related to the scalar discrete entries is described. In general,
the involved discrete state can be a vector. In this case the state dimension can be reduced via specific
denoting, which leads the solution to the proposed scalar-entry one. It means, that for the discrete state
x̃t ≡ [x̃1;t, . . . , x̃s;t]′ with finite number s and k = {1, . . . , s}, each entry x̃k;t ∈ x̃∗ with its possible values
is treated as an individual possible value of a new scalar state Xt. However, the present paper is focused
on the considered case.

After estimation of the discrete state entry its mean value can be involved in the consequent entry-wise
filtering (3.3) along with Gaussian entries. The mean value is calculated as a sum of possible values of
the entry multiplied by the updated probabilities, i.e.∑

k∈x̃∗

∏
x̃t∈x̃∗

x̃t+1pk(t+1) ≡ µfx̊;t+1, (4.16)

which means, that for the considered case of the state vector and starting at i = {x̊, x̊ − 1, . . . , 1}, the
relation (3.3) exploits µfx̊;t for its last x̊-th pdf. The rest of the pdfs for i = {x̊ − 1, . . . , 1} are evolved
according to (3.24) with the help of the factorized Kalman filter, proposed in Subsection 3.1.
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Chapter 5

EXPERIMENTS

In urban traffic control, which is a target application domain of the research, the state variables of the
continuous nature are used for modeling of a length of a car queue on an intersection. The length of the
queue expresses a state of the transport network most adequately, but it is not directly observable and
has to be estimated. Various discrete-valued state variables could be involved into the estimation (signal
lights, level of service, visibility, road surface etc). The paper presents an experiment of the filtering with
the mixed-type state, where the discrete entry indicates the queue existence on the intersection lane.

The simulated system, used for demonstration of the proposed filtering, is provided by the traffic
microsimulator AIMSUN [22]. The system represents the intersection with four arms, each with one
input and one output lane. Each lane is equipped by a measuring detector. The input detectors are
placed about 100 meters before the stop line at the input lane of the intersection arm, and the output
detectors – at the output lane. The detectors measure the following quantities: intensity, expressing
a number of the cars, passing through an intersection lane per hour [c/h], and occupancy, reflecting a
proportion of a time period of activating the detector by cars [%]. The scope of the paper does not
allow to describe the specific features of the traffic control in details, but the physical interpretation
of the traffic system model can be explained. According to [2], Gaussian state-space model (3.4-3.5) is
specialized to the traffic control area in the following way.

observation model yt = Ctxt +Htut + vt, (5.1)
state evolution model xt+1 = Atxt +Btut+1 + Ft + ωt. (5.2)

The system output yt in (5.1) relates to the column vector Yt of output intensities, provided by the output
detectors of the intersection lanes, i.e. Yt = [y1;t, . . . , yn;t]′, n = 4 is a number of lanes (identical to the
number of arms for the given system). The state xt in models (5.1-5.2) expresses the length of the car
queue at the intersection lanes in cars [c]. One car is supposed to have about 6 meters. The queue length
is not directly observed and has to be estimated. The state vector xt relates to ξt = [ξ1;t, . . . , ξ4;t]′, where
ξi;t is a queue length to be estimated. According to [2, 3, 4], the general idea of the car queue length
evolution lies in the statement, that the queue length at the i-th intersection lane is equal to the previous
queue plus arrived cars minus departed cars. In general, it can be expressed in the following way.

ξi;t+1 = δi;tξi;t − [δi;tSi + (1− δi;t)Ii;t]ut︸ ︷︷ ︸
departed cars

+ Ii;t,︸︷︷︸
arrived

, i = {1, . . . , n}, (5.3)

where Si is the known saturated flow of the i-th lane (the maximal number of cars, which can pass
through the lane per hour in the case of the green light) with the following values in cars in proportion to
the time period, equal to ninety seconds: S1 = 27, S2 = 20.5, S3 = 23, S4 = 27. Ii;t is the input intensity,
and ut is the time of the green light in seconds [s] (proportional to the time period of sampling) with the
values ut = [0.5 0.4]′. δi;t is a discrete queue indicator so that δi;t = 1, if the queue exists, and δi;t = 0
otherwise. The paper proposes to estimate it as the discrete state x̃t, which means, that a probability of
the queue existence, obtained according to (4.16), is used in (5.3).

As the discrete output to be exploited in the estimation of the queue indicator according to (4.6)
and (4.8), one can use the discretized value ỹi;t ∈ {0, 1} of the input occupancy OIi;t. The value ỹi;t
expresses either the high (ỹi;t = 1) occupancy of the input detector or the low one (ỹi;t = 0) on the i-th
intersection lane, discretized via the average value θyi chosen by the experts. According to Table 4.1,
the following probabilities of taking the value ỹi;t = 1 are to be used in relation (4.6): p1|01 = 0.98,
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p1|00 = 0.8, p1|11 = 0.11, p1|10 = 0.01 (the probabilities of the opposite value are taken as one minus the
corresponding probability). The threshold θu = 0.5 is given by the traffic experts.

The probabilities of the queue existence for the value δi;t+1 = 1 to be used for the discrete state
evolution, according to the model (4.2) and Table 4.2, are as follows: p̃1|01 = 0.57, p̃1|00 = 0.54,
p̃1|11 = 0.02, p̃1|10 = 0.01. The prior probability, corresponding to Table 4.3, expresses the prior
knowledge about the queue existence on the i-th intersection lane. Besides the knowledge of traffic
experts about problematic traffic regions, the prior probability of the queue existence primarily depends
on the time of the day. The daily course of the traffic has a dynamically changing character, starting at
very low driving activities on the roads in the night and having the main peak-hours in the morning and
the late afternoon time. In the case of the estimation, made for the daily course, the usual practice in
the traffic control area is to start the filter about 4 a.m. It defines the low prior value as p1(t) = 0.1 to
be incorporated in (4.6). The queue indicator δi;t is identified with its mean value, calculated according
to (4.16), and substituted in models (5.1-5.2), dealing with the length of the queue. The time-varying
matrices Ct and Ht for the considered simulated system are composed as follows [2, 3, 4].

Ct =


0 α21(1− δ2,t) α31(1− δ3,t) α41(1− δ4,t)

α12(1− δ1,t) 0 α32(1− δ3,t) α42(1− δ4,t)
α13(1− δ1,t) α23(1− δ2,t) 0 α43(1− δ4,t)
α14(1− δ1,t) α24(1− δ2,t) α34(1− δ3,t) 0

 , Ht =


H1t 0

0 H2t
H3t 0

0 H4t

 , (5.4)

with H1t =
m=4∑
k=2

αk1((1− δk,t)Ik,t + δk,tSk), (5.5)

H2t = α12((1− δ1,t)I1,t + δ1,tS1) +
m=4∑
k=3

αk2((1− δk,t)Ik,t + δk,tSk), (5.6)

H3t =
m=2∑
k=1

αk3((1− δk,t)Ik,t + δk,tSk) + α43((1− δ4,t)I4,t + δ4,tS4), (5.7)

H4t =
m=3∑
k=1

αk4((1− δk,t)Ik,t + δk,tSk), (5.8)

where αij is the known (constant) parameter of the turn rate, reflecting the ratio of cars going from
the i-th arm to the j-th arm, j 6= i, in percent [%]. The provided values of this parameter are α12 =
0.3, α13 = 0.5, α14 = 0.2, α21 = 0.3, α23 = 0.2, α24 = 0.5, α31 = 0.5, α32 = 0.2, α34 = 0.3, α41 =
0.2, α42 = 0.5, α43 = 0.3. For the state evolution model (5.2) the matrices At, Bt and Ft are as follows.

At =


δ1,t 0 0 0
0 δ2,t 0 0
0 0 δ3,t 0
0 0 0 δ4,t

 , Ft =


I1,t
I2,t
I3,t
I4,t

 , (5.9)

Bt =


−(δ1,tS1 + (1− δ1,t)I1,t) 0

0 −(δ2,tS2 + (1− δ2,t)I2,t)
−(δ3,tS3 + (1− δ3,t)I3,t) 0

0 −(δ4,tS4 + (1− δ4,t)I4,t)

 . (5.10)

The noises vt and ωt are defined according to (3.4-3.5) with the covariance matrices Rv and Rw respec-
tively. The covariances are computed as a mean of squares of differences between the state (or output)
value and its conditional mean. The mean is substituted by the samples of the daily (or for the corre-
sponding time of a day) course of the state (or output), which is constructed as a spline approximation
of several last periodic courses (e.g. courses during the workdays of a week). The resulted covariance
matrices, used for the experimental part of the work, are respectively

Rv =


4.0757 0.2023 0.2860 0.0148
0.2023 4.9410 0.4509 0.0505
0.2860 0.4509 4.3145 −0.1486
0.0148 0.0505 −0.1486 4.2407

 . (5.11)

and

Rw =


1.7898 0.2446 −0.0387 0.0166
0.2446 1.2599 0.0263 −0.0091
−0.0387 0.0263 1.5738 0.0200
0.0166 −0.0091 0.0200 1.3482

 . (5.12)
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The estimation of the queue length is made for the daily course of the traffic, starting the factorized
Kalman filter about 4 a.m. with the zero-mean initial states. It is naturally caused by the low night
intensities. The initial covariance matrix, chosen by the experts is as follows.

P0 =


2.8836 0.0789 0.2260 −0.0002
0.0789 2.9479 0.1090 0.0979
0.2260 0.1090 1.7431 −0.0514
−0.0002 0.0979 −0.0514 2.5355

 . (5.13)

The simulated traffic system, constructed in the described way, has been used for experiments. The
filtering of the mixed-type states, proposed in Sections 3-4, has been applied to the estimation of the
continuous queue lengths and the discrete queue existence indicators. The simulated data for the experi-
ments were identified with the real measurements. The data set was available for 960 time periods, which
corresponds to the 24-hours course of the traffic. Fig. 5.1 shows the results of the filtering of the car queue
length, compared with the simulated one, and the estimated queue indicator at the intersection input
lane 3 of the considered traffic system (the estimation results for the rest of the lanes are very similar).
For better viewing, Fig. 5.1 demonstrates a shorter traffic course for 800 time periods, i.e. from 4 a.m
up to the midnight. The queue existence is adequately indicated for the morning and the late afternoon
peak-hours of the daily traffic. The estimated and simulated car queue lengths are in an adequate cor-
respondence. The obtained variances of the estimated queue lengths for all the input lanes, evolved as
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Figure 5.1: Mixed-type state estimation at intersection lane 3

the inverse elements of the matrix Dp|t+1 according to (3.24), are respectively as follows: 3.4257, 1.3872,
1.5996, 1.7332. Fig. 5.2 plots the mean value of the queue indicator, obtained according to (4.16), at
the intersection input lane 3 against its values, calculated directly from the simulations, i.e. δi;t = 0, if
(ξi;t + Ii;tut) < Si;tut and δi;t = 1, if (ξi;t + Ii;tut) ≥ Si;tut [4].
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Figure 5.2: Discrete queue indicator estimation at intersection lane 3
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